An exterior-algebraic derivation of the symmetric stress–energy–momentum tensor in flat space–time
نویسندگان
چکیده
This paper characterizes the symmetric rank-2 stress-energy-momentum tensor associated with fields whose Lagrangian densities are expressed as dot product of two multivector fields, e. g., scalar or gauge in flat space-time. The is derived by a direct application exterior-algebraic methods to deal invariance action infinitesimal space-time translations; this derivation avoids use canonical tensor. Formulas for components and itself generic values grade $s$ number time space dimensions, $k$ $n$, respectively. A simple, coordinate-free, closed-form expression interior derivative (divergence) also obtained: provides natural generalization Lorentz force that appears context electromagnetic theory. Applications formulas cases generalized electromagnetism, Proca action, Yang-Mills conformal briefly discussed.
منابع مشابه
Tensor, Exterior and Symmetric Algebras
3 The Exterior Algebra 6 3.1 Dimension of the Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Other Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 The determinant formula . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملTensor Algebras, Symmetric Algebras and Exterior Algebras
We begin by defining tensor products of vector spaces over a field and then we investigate some basic properties of these tensors, in particular the existence of bases and duality. After this, we investigate special kinds of tensors, namely, symmetric tensors and skew-symmetric tensors. Tensor products of modules over a commutative ring with identity will be discussed very briefly. They show up...
متن کاملLecture III: Tensor calculus and electrodynamics in flat spacetime
, we can define the outer product (or “tensor product”) to be the tensor A⊗ B with (A⊗B)(k̃, ...u, l̃, ...v) = A(k̃, ...u)B(l̃, ...v). (1) It is trivial to see that this is in fact a tensor – it is linear in each input. Its components are (A⊗B)1M β1...βN γ1...γP δ1...δQ = A1M β1...βNBγ...γ δ1...δQ . (2) This is the generalization to tensors of arbitrary rank of taking two column vectors u and v and...
متن کاملA few classical results on tensor, symmetric and exterior powers
0.1. Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.3. Basic conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.4. Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.5. Tensor powers of k-modules . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Physical Journal Plus
سال: 2021
ISSN: ['2190-5444']
DOI: https://doi.org/10.1140/epjp/s13360-021-01192-7